?!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
贵金?span style="font-family:;">Pt因其h合适的费米能而被用作常用的助催化剂,hzL高、稳定性好{优ѝ作为助催化剂,Pt的化学状态对光催化剂的析氢活性有显著影响Q但q种影响未得到深入研究。更为重要的是,了解Pt在光催化反应q程中的真实性质Q可以ؓ构徏h高活性的光催化剂提供新的思\?/span> q期Q中国石油大学(北京Q王雅君副研I员Nl与清华大学朱永法教授在?/span>Chemical Engineering Journal?/span>期刊上发表了题ؓ?/span>Boosting photocatalytic hydrogen evolution via regulating Pt chemical states”的文章Q?span style="font-family:;">DOIQ?/span>10.1016/j.cej.2022.136334Q。本论文提出了一U有效的{略Q通过调节Pt的化学状态来大幅度提?/span>Pt/g-C3N4光催化剂的氢性能。文中制备了不同Pt0含量?/span>Pt/g-C3N4催化剂,发现提高Pt0含量可以大幅提高光解水氢活性。原位红外光谱和DFT理论计算证明Q气?/span>处理使电子从g-C3N4?/span>N原子转移?/span>Pt2 ?/span>Q从而增加了Pt0物种的数量?/span>Pt0物种的大量生成有利于加速光生电L分离。此外,Pt0?/span>Pt2 h更低的氢气吸附能Q有利于氢气的溢出。因此,h高比?/span>Pt0的光催化剂具有更高的产氢zL?/span>
?/span>2 zL测试。(aQ样品在可见光(λ ?420 nmQ下的光催化产氢速率。(bQ?/span>1.0%-Pt/CN- BH-H的光催化产氢循环实验。(cQ?/span>1.0%-Pt/CN-P?/span>1.0%-Pt/CN-BH-H?/span>420?/span>450 nm处的单L长表观量子效率?/span>Q?/span>dQ不?/span>Pt/g-C3N4复合材料光催化氢速率的比较?/span>
Z研究不同Pt物种Q?/span>Pt2 ?/span>Pt0Q?/span>?/span>g-C3N4之间的电荷分L率,我们量?/span>1.0%-Pt/CN-BH-H?/span>1.0%-Pt/CN-P在可见光条g下的原位U外光谱?/span>?/span>1.0%-Pt/CN-BH-H在黑暗条件下相对较低?/span>?/span>强相比,随着光照旉的增加,特征峰显著提?/span>Q?/span>?/span>3aQ?/span>?/span>822 cm-1处的峰归因于七嗪环的伸羃振动Q?/span>886 cm-1处的峰归因于N-H键的弯曲振动?/span>?/span>1489?/span>1710 cm-1附近的峰分别对应于杂环中?/span>-C=N?/span>N-C=NQ而在1338 cm-1附近的峰则来源于-CN的~。随着光照旉的增加,?/span>?/span>强度明显增大Q峰位置保持不变。这些结果表明,1.0%-Pt/CN-BH-H样品?/span>g-C3N4的结构和化学键在可见?/span>照射下由于强烈的电子传递而发生明昑֏?/span>。ؓ了比较,我们q研I了1.0%-Pt/CN-P样品Q?/span>?/span>3bQ?/span>?/span>1.0%-Pt/CN-P没有明显的峰?/span>?/span>?/span>Q这可能是由?/span>Pt2 ?/span>g-C3N4之间的电子{U能力较差所致。这些结果表明,?/span>Pt0比例有利于电L分离和氢活性的提高?/span>
?/span>3 原位U外表征?/span>Q?/span>aQ?/span>1.0%-Pt/CN-BH-H和(bQ?/span>1.0%-Pt/CN-P在可见光Q?/span>λ ?420 nmQ?/span>照射下的原位U外光谱?/span>Q?/span>cQ?/span>1.0%-Pt/CN-BH在气氛处?/span>和加?/span>q程中的原位U外光谱?/span>Q?/span>dQ?/span>局部放大图?/span>
?/span>4 DFT理论计算。(aQ?/span>dQ?/span>优化l构Q?/span>Q?/span>bQ?/span>eQ?/span>?/span>?/span>电荷密度?/span>Q?/span>cQ?/span>fQ?/span>Pt2 ?/span>Pt0物种Ҏ?/span>的吸附能?/span>
本研I成功制备了?/span>Pt0比例Q?/span>60.1%Q?/span>的光催化剂?/span>它的光催化氢速率辑ֈ2.316 mmol h-1 g-1Q比可见光照?/span>Q?/span>λ ?420 nmQ?/span>?/span>Pt0比例较低Q?/span>8.2%Q?/span>?/span>1.0%-Pt/CN-PQ?/span>0.605 mmol h-1 g-1Q?/span>提高?/span>4倍?/span>1.0%-Pt/CN-BH-H的高光催化性能可归因于其中含有大量?/span>Pt0物种Q加速了光生电荷的分?/span>?/span>另外Q?/span>Pt0物种较低的吸附能有利于氢气的溢出。因此,调控化学状态可能是开发新型光催化剂的有效{略?/span>
论文W一作者ؓ中国xa大学Q北京)博士生武xQ论文通讯作者ؓ中国xa大学Q北京)王雅君副研究员和清华大学朱永法教授。此研究得到国家重点研发计划{资助支持?/span>
原文链接
https://www.sciencedirect.com/science/article/pii/S1385894722018290